
COANALYTIC FAMILIES OF FUNCTIONS

JULIA MILLHOUSE AND LUKAS SCHEMBECKER

Abstract. For Van Douwen families, maximal families of eventually different permutations

and maximal ideal independent families we show that the existence of a Σ1
2 family implies the

existence of a Π1
1 family of the same size. We also prove a similar, but slightly weaker result for

generating sets of cofinitary groups.

1. Introduction

Many combinatorial sets of reals constituting cardinal characteristics can be obtained by an

application of the Axiom of Choice or equivalently, a wellordering of the continuum, and hence

Σ1
2 examples of such sets exist in L, given the Σ1

2-definable wellorder of the constructible reals.

This was initially observed by Gödel [12]. With more careful methods, the recursive construction

can be done in such a way as to yield a coanalytic (Π1
1) witness to the combinatorial family in

question; this is of particular interest when the family is known to not be analytic as in this case

this completely decides the minimal complexity of such an object. A robust coding technique

originating in the work of Erdos, Kunen, and Mauldin [5], later streamlined by Miller [17], has

been the main tool for obtaining coanalytic witnesses of various combinatorial families in models

of V=L, see also [22]. Applied in the literature at the intersection of descriptive set theory and

set theory of the reals, we find theorems asserting the consistency of an inequality of cardinal

characteristics with the added nuance that the witness for the cardinal of value ℵ1 can be taken

to be coanalytic.

More recently, Törnquist [21] has constructed a coanalytic mad family under weaker assump-

tions than V=L; namely, he shows that assuming there exists a Σ1
2 mad family, then there exists

a coanalytic mad family. His proof is purely combinatorial and simpler in application to the

method mentioned above, and moreover has the advantage of being able to be applied in models

of ¬CH. More proofs resembling Törnquist’s began appearing sporadically throughout the liter-

ature, for the cases of, for example, maximal independent families, maximal eventually different

families, maximal orthogonal families of Borel probability measures, and more recently Hausdorff

gaps (see [3], [8], [10], [18], respectively). A general framework and uniform presentation of these

proofs can be found in [18].

In this paper we consider four cases of combinatorial sets of reals: Van Douwen families,

maximal eventually different families of permutation, maximal cofinitary groups, and maximal

ideal independent families. In each case we show that the existence of a Σ1
2 such family implies

the existence of a Π1
1 family of the same size.
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2. Van Douwen families

A family F ⊆ ωω is called eventually different if |f ∩ g| < ω for all distinct f, g ∈ F , i.e., there

are only finitely many n such that f(n) = g(n). Such a family F is maximal if it is maximal with

respect to inclusion among all eventually different families; equivalently, for any f ∈ ωω there

exists g ∈ F such that |f ∩ g| = ω. A strengthening of this notion of maximality is that of being

Van Douwen; an eventually different family F is Van Douwen if for any infinite partial function

f ∈ ωω, there exists g ∈ F with |f ∩ g| = ω. In other words, Van Douwen families are maximal

eventually different families which are also maximal with respect to infinite partial functions.

Both CH and MA imply the existence of Van Douwen families. Zhang [23, Theorem 4.2] shows

that under CH, there exists a Cohen-indestructible Van Douwen family. Later, Raghavan [19]

proved that there always is a Van Douwen family, answering a question by Van Douwen (thus its

naming). Regarding definability, he also showed that Van Douwen families can never be analytic.

This is in stark contrast to the situation for maximal eventually different families. There, Shelah

and Horowitz [13] showed that there always exists a Borel maximal eventually different family of

size c. However as Borel and analytic sets satisfy the perfect set property and maximal eventually

different families cannot be countable, any Borel or analytic maximal eventually different family

must always be of size c, and therefore it is of interest to ask about the definability of maximal

eventually different families of size strictly less than c in models of ¬CH.
In [8] Fischer and Schrittesser constructed a maximal eventually different family indestructible

by countably supported iteration or product of Sacks-forcing of any length, and they improve

this result by showing a coanalytic such family exists in L. Specifically, a Sacks indestructible

maximal eventually different family can be constructed in L in a Σ1
2 way, and then [8, Theorem 8]

showed that the existence of a Σ1
2 is equivalent to the existence of a coanalytic maximal eventually

different family. Their argument follows the structure of Törnquists proof [21] that a Σ1
2 mad

family implies the existence of a Π1
1 mad family. More specifically, they directly code a real

into the function values of the functions composing the coanalytic maximal eventually different

family. We will prove the analogous result for Van Douwen families; however, we need a different

coding argument as their coding argument destroys the property of being Van Douwen.

Theorem 1. If there is a Σ1
2 Van Douwen family, then there is a Π1

1 Van Douwen family of the

same size.

Proof. Define functions χ0, χ1 :
ωω× ω2 → ωω

χ0(f, c)(n) := 2f(n) + c(n),

χ1(f, c)(n) := 2f(n) + 1− c(n).

Now, assume that F is a Σ1
2 Van Douwen family. Further let H ⊆ ωω× ω2 be Π1

1 such that F

is the projection of H to the first component. By uniformization we may assume that H is the

graph of a partial function. Let

G := χ0[H] ∪ χ1[H].
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We claim that G is the desired Van Douwen family. So let f0 ∈ F and c0 := H(f0). By

construction we have for all n ∈ ω

χ0(f0, c0)(n) ̸= χ1(f0, c0)(n).

Similarly, for f1 ∈ F with f1 ̸= f0 and c1 := H(f1) we may choose N ∈ ω such that f0(n) ̸= f1(n)

for all n > N . But then for all such n > N and i0, i1 ∈ 2 we also have

χi0(f0, c0)(n) ̸= χi1(f1, c1)(n).

Thus, all members of G are eventually different. Now, let g : A → ω be an infinite partial

function. Then, we define ĝ : A → ω by

ĝ(n) := ⌊1
2
g(n)⌋.

Since F is Van Douwen, choose f ∈ F and B ∈ [A]ω such that f ↾B = ĝ ↾B. Let c := H(f),

then for all n ∈ B there are i, j ∈ 2 with

g(n) = 2ĝ(n) + i = 2f(n) + i = χj(f, c)(n).

Thus, either g =∞ χ0(f, c) or g =∞ χ1(f, c) as desired. As for the definability of G, we will show

that for all g ∈ ωω,

g ∈ G ⇔ ∃(f, c) ∈ ∆1
1(g)[(f, c) ∈ H ∧ (χ0(f, c) = g ∨ χ1(f, c) = g)],

which is a Π1
1 definition by the Spector-Gandy theorem (see, for example, [17, Corollary 29.3]).

Indeed, given any g, we have that f = ⌊g2⌋, where

⌊g
2
⌋(n) =

{
g(n)
2 if g(n) even,

g(n)−1
2 if g(n) odd.

Clearly g 7→ ⌊g2⌋ is a recursive function. Then we can define the reals c(n) = i if and only if g(n)

mod 2 = i, and c′(n) = 1 − c(n). To check whether (f, c) ∈ H or (f, c′) ∈ H are both Π1
1, and

checking χi(f, c) = g is Borel for each i < 2. This shows the Π1
1-definability of G above. □

Corollary 2. It is consistent with c ≥ ℵ2 that there exists a coanalytic Van Douwen family of

size ℵ1.

Proof. Repeat Zhang’s construction of a Cohen-indestructible Van Douwen family F in L , along

an enumeration of the set of nice Cohen names for reals given by the Σ1
2-definable wellorder ≤L.

After adding κ-many Cohen reals, where κ ≥ ℵ2 is a regular cardinal, F is still a Van Douwen

family, which has a Σ1
2 definition by Shoenfield absoluteness. Apply the theorem above. □

3. Eventually different families of permutations

In this section we will consider eventually different families of permutations; these are eventu-

ally different families F ⊆ S∞, where S∞ denotes the set of permutations (i.e. bijections) of ω.

Such a family F is maximal as an eventually different family of permutations if for any g ∈ S∞
there exists f ∈ F such that f(n) = g(n) for infinitely many n ∈ ω. The minimal size of a

maximal eventually different family of permutations is denoted ap. Constructions of models in
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which ae = ap = ℵ1 < c = ℵ2 with coanalytic witnesses can be found in [9]; it remains open

whether ae = ap is a theorem of ZFC.

Witnesses for ap can be analytic, by results of Horowitz and Shelah, though one can ask about

the definability of ℵ1-sized maximal eventually different families of permutations in models with

c ≥ ℵ2. In this section will show that a coanalytic witness for ap = ℵ1 already exists if there is a

Σ1
2 witness for ap = ℵ1. This is the optimal complexity of such a family in models with c ≥ ℵ2.

The proof will make use of the following easy to prove graph theoretic fact:

Fact 3. Every bipartite 2-regular graph decomposes into a disjoint union of cycles of even or

infinite length and hence has a perfect matching by picking edges alternatingly.

Lemma 4. Assume f : ω → ω is 2-to-1, i.e. every n ∈ ω has exactly two preimages. Then there

is a function i : ω → 2 such that the function g : ω → ω defined by g(n) := f(2n + i(n)) is a

bijection.

Proof. Consider the following bipartite graph H (with possible multi-edges):

(i) We have countably many left {Ln | n ∈ ω} and right {Rn | n ∈ ω} nodes,

(ii) For each n ∈ ω we have an edge en between L⌊n
2
⌋ and Rf(n).

By construction, every Ln has degree 2. As f is 2-to-1 the same holds for the Rn, i.e. H is

2-regular. Hence, H has a perfect matching P by the fact above. Now, we define for n ∈ ω

i(n) :=

{
0 if e2n ∈ P,

1 if e2n+1 ∈ P.

Note, for every n ∈ ω that e2n and e2n+1 are the only edges incident to Ln. Thus, exactly one

of these cases above occurs as we have a perfect matching. It is also easy to see that g will then

be bijective: If g was not injective, then P would not be a matching, and if g was not surjective,

then P would not be perfect. □

Theorem 5. If there is a Σ1
2 maximal eventually different family of permutations, then there is

a Π1
1 maximal eventually different family of permutations of the same size.

Proof. Define functions χ0, χ1 : S∞ × ω2 → S∞ for n ∈ ω by

χ0(f, c)(2n) := 2f(n) + c(n),

χ0(f, c)(2n+ 1) := 2f(n) + 1− c(n),

χ1(f, c)(2n) := 2f(n) + 1− c(n),

χ1(f, c)(2n+ 1) := 2f(n) + c(n).

Now, assume that F is a Σ1
2 maximal family of permutations. Further let H ⊆ ωω× ω2 be Π1

1

such that F is the projection of H to the first component. By uniformization we may assume

that H is the graph of a partial function. Let

F̂ := χ0[H] ∪ χ1[H].
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We claim that F̂ is the desired maximal eventually different family of permutations. Let f ∈ S∞,

c ∈ ω2 and i ∈ 2. First we show that χi(f, c) ∈ S∞. Assume for n0, n1 ∈ ω and j0, j1 ∈ 2 we have

χi(f, c)(2n0 + j0) = χi(f, c)(2n1 + j1)

By construction, this implies that f(n0) = f(n1). But f is injective, so also n0 = n1. Again, by

construction of χi(f, c) we also obtain j0 = j1, i.e. χi(f, c) is injective. For surjectivity, let m ∈ ω

and j ∈ 2. Since f is surjective, choose n such that f(n) = m. But then either

χi(f, c)(2n) = 2f(n) + j = 2m+ j

or we have

χi(f, c)(2n+ 1) = 2f(n) + j = 2m+ j.

Hence χi(f, c) is surjective. Next, let f0 ∈ F and c0 := H(f0). By construction we have for all

n ∈ ω

χ0(f0, c0)(n) ̸= χ1(f0, c0)(n).

Similarly, for f1 ∈ F with f1 ̸= f0 and c1 := H(f1) we may choose N ∈ ω such that f0(n) ̸= f1(n)

for all n > N . But then for all such n > N and i0, i1 ∈ 2 we also have

χi0(f0, c0)(n) ̸= χi1(f1, c1)(n).

Thus, all members of F̂ are eventually different. Now, towards maximality of F̂ let ĝ ∈ S∞.

Choose a function i : ω → 2 such that g : ω → ω defined by

g(n) := ⌊ ĝ(2n+ i(n))

2
⌋

is a bijection. This is possible by the previous lemma as the function ⌊ ĝ(n)2 ⌋ is 2-to-1. By

maximality of F , we may choose f ∈ F and A ∈ [ω]ω such that g ↾A = f ↾A. Let c := H(f) and

n ∈ A. Then there are j, k ∈ 2 so that

ĝ(2n+ i(n)) = 2g(n) + j = 2f(n) + j = χk(f, c)(2n+ i(n)).

Thus, either ĝ =∞ χ0(f, c) or ĝ =∞ χ1(f, c) as desired. As before Spector-Gandy shows that F̂

is Π1
1 as for fixed i ∈ 2 we can compute (f, c) from χi(f, c). □

Before we move on to maximal cofinitary groups, we discuss the minimal complexity of a

maximal family of permutations. For ae Schrittesser [20] showed that there is a Π0
1, i.e. a closed

maximal eventually different family. Similarly, for ag Mejak and Schritesser showed that there

is a Π0
1 set freely generating a maximal cofinitary group. Thus, the whole group has complexity

Σ0
2. Moreover, this group is not only maximal as a cofinitary group, but also maximal as an

eventually different family of permutations (see [16, Proposition 2.13])). Hence, they also proved

that there is a Σ0
2 witness for ap, however to the knowledge of the authors it is not known what

the minimal complexity for a maximal eventually different family of permutations is.

Question 6. Is there a Π0
1 maximal eventually different family of permutations?
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In the same way Schrittesser obtained a Π0
1 maximal eventually different family, one might

assume that our proof above may be used to obtain an analogous statement to [20, Lemma 4.1].

However, with our coding above we only get the following:

Lemma 7. Let 0 < ξ < ω1. If there is a Π0
ξ+2 maximal eventually different family of permuta-

tions, then there is a Π0
ξ+1 maximal eventually different family of permutations.

Proof. Adapt [20, Lemma 4.1] using the coding above. □

Note the extra assumption of 0 < ξ, so with this lemma we can only obtain a Π0
2 witness for

ap. Essentially, this is due to the coding presented above coding elements of Cantor space instead

of Baire space. Hence, in order to define the maximal eventually different family of permutations

of lower complexity one needs to express that the sequence of (non-)flips encodes a sequence of

natural numbers. However, to this end we need to require that the sequence of (non-)flips is not

eventually constant. But this is a Π0
2 statement, thus requiring the extra assumption.

4. Cofinitary groups

Next, we will consider maximal cofinitary groups. If an eventually different family of per-

mutations G is also a group with respect to concatenation, then we call it a cofinitary group.

Equivalently, every element of G is either the identity or only has finitely many fix-points. G

is maximal if its maximal with respect to inclusion among all cofinitary groups. The minimal

cardinality of a maximal cofinitary group is uncountable and denoted with ag; again no known

relations or the absence thereof between ae, ap and ag are known.

In terms of definability it is often easier to obtain a definable generating set for a cofinitary

group. We say that F generates G if ⟨F ⟩ = G, where ⟨F ⟩ is the group generated by F . If there

are no relations among the generators in F , we say that F freely generates G. For example, it was

first shown by Gao and Zhang [11] that in L there is a Π1
1 generating set for a maximal cofinitary

group, before Kastermans [15] showed that indeed the entire group can be Π1
1. Later, Horowitz

and Shelah [14] showed that there always is a Borel maximal cofinitary group. More recently,

Fischer, Schrittesser and the second author [7] showed that in L there is a Π1
1 cofinitary group

which is indestructible by various different tree forcings preserving non(M). They employed

an intricate coding argument, where information is coded into the lengths orbits and into the

amount of orbits of a certain length.

Here, we use a simpler coding technique to obtain a result for cofinitary groups similar to the

previous sections. However, with our methods we can only get a result for generating sets of

cofinitary groups and we need to additionally assume that the maximal cofinitary group is freely

generated and also maximal as an eventually different family of permutations. This seems like

a strong extra assumption, but indeed most cofinitary groups constructed in the natural way,

satisfy these extra assumptions. In particular, the next theorem provides a different way to show

that many L-extensions have a coanalytic generating set for a maximal cofinitary group.



COANALYTIC FAMILIES OF FUNCTIONS 7

Theorem 8. If there is a Σ1
2 family freely generating a maximal cofinitary group, which is also

maximal as an eventually different family of permutations, then there is a Π1
1 family generating a

maximal cofinitary group, which is also maximal as an eventually different family of permutations.

Proof. As in Theorem 5 define χ0, χ1 : S∞ × ω2 → S∞ for n ∈ ω by

χ0(f, c)(2n) := 2f(n) + c(n),

χ0(f, c)(2n+ 1) := 2f(n) + 1− c(n),

χ1(f, c)(2n) := 2f(n) + 1− c(n),

χ1(f, c)(2n+ 1) := 2f(n) + c(n).

This time, assume that F is a Σ1
2 set freely generating the maximal cofinitary group Γ := ⟨F ⟩.

Further let H ⊆ ωω× ω2 be Π1
1 such that F is the projection of H to the first component. By

uniformization we may assume that H is the graph of a partial function. Let

F̂ := χ0[H] ∪ χ1[H].

By the arguments in the previous section F̂ is a family of permutations and is Π1
1. It remains to

show that for Γ̂ := ⟨F̂ ⟩ we have

(1) Γ̂ is cofinitary,

(2) Γ̂ is maximal as an eventually different family of permutations.

From now on we consider the partition of ω given by the pairs Bn := {2n, 2n+ 1} for n ∈ ω. We

need the following lemmata:

Lemma 9. For every ĝ ∈ Γ̂ there is a unique g ∈ Γ such that for all n ∈ ω

ĝ[Bn] = Bg(n).

Moreover, the assignment Ψ : Γ̂ → Γ given by ĝ 7→ g is a surjective group homomorphism with

Ψ(χi(f,H(f))) = f for all f ∈ F and i ∈ 2.

Proof. For uniqueness, suppose g, h ∈ Γ satisfy ĝ[Bn] = Bg(n) = Bh(n). Since the Bn’s are disjoint

this implies g = h, so it suffices to prove existence. To this end, for i ∈ 2, f ∈ F and c := H(f)

by definition of χi we clearly have that

χi(f, c)[Bn] = Bf(n).

Similarly, it is easy to see that also for the inverse χi(f, c)
−1 we have

χi(f, c)
−1[Bn] = Bf−1(n).

Thus, the required g ∈ Γ exists for all generators and inverses thereof in Γ̂. We prove the general

case by induction on the length of x, so let ĝ = x̂1 . . . x̂k be a reduced word with letters in F̂±1.

If k = 0 then ĝ = idω and idω[Bn] = Bn = Bidω(n) with idω ∈ Γ. Now, let k > 0, ĥ1 = x̂1 and

ĥ2 = x̂2 . . . x̂k. By induction, there are h1, h2 ∈ Γ such that ĥ1[Bn] = Bh1(n) and ĥ2[Bn] = Bh2(n)

for all n ∈ ω. Then, for n ∈ ω we compute

ĝ[Bn] = ĥ1[ĥ2[Bn]] = ĥ1[Bh2(n)] = Bh1(h2(n)) = B(h1◦h2)(n),



8 JULIA MILLHOUSE AND LUKAS SCHEMBECKER

proving the existence of the desired g := h1◦h2. This computation also proves the homomorphism

property of Ψ. Furthermore, we obtain

Ψ[Γ̂] = Ψ[⟨F̂ ⟩] = ⟨Ψ[F̂ ]⟩ = ⟨F ⟩ = Γ,

so Ψ is surjective. □

Lemma 10. Let τ : ω → ω be the flip map defined for n ∈ ω by

τ(2n) := 2n+ 1 and τ(2n+ 1) := 2n.

Then τ ∈ Γ̂ is central in Γ̂ and we have ker(Ψ) = {idω, τ}.

Proof. First, note that τ2 = idω and for every f ∈ F , i ∈ 2 and c := H(f) we have

χ0(f, c)χ1(f, c)
−1 = τ and χ1(f, c)

−1χ0(f, c) = τ.

This shows that τ ∈ Γ̂ and that τ commutes with all generators of Γ̂. Thus, τ is central in Γ̂.

Further, Ψ(τ) = idω, so ker(Ψ) ⊇ {idω, τ}. Now, let ĝ ∈ ker(Ψ). Write ĝ as a word in letters

from F̂±1. Using χ±1
1 = τχ±1

0 = χ±1
0 τ , centrality of τ and τ2 = idω, replace each occurrence of

χ1 by χ0 and move the τ to the front to obtain

ĝ = τ iĥ,

where i ∈ 2 and ĥ is a word in the alphabet {χ0(f,H(f))±1 | f ∈ F}. Remember ĝ, τ ∈ ker(Ψ),

so apply Ψ to obtain

idω = Ψ(ĝ) = Ψ(τ iĥ) = Ψ(τ i)Ψ(ĥ) = Ψ(ĥ).

But by Lemma 9 Ψ is a homomorphism which maps χ0(f,H(f)) to f , so Ψ(ĥ) is the corresponding

word in the generators F±1 of Γ. But Γ = ⟨F ⟩ is freely generated, so the equation above implies

that ĥ = idω Consequently, ĝ = τ i ∈ {idω, τ}. □

Proposition 11. Γ̂ is cofinitary.

Proof. Let ĝ ∈ Γ̂ \ {idω}. If ĝ ∈ ker(Ψ), then by the previous lemma we can only have ĝ = τ

which has no fixpoints. Thus, we may assume that g := Ψ(x) ∈ Γ\{idω}. Let k ∈ ω be a fixpoint

of ĥ, say k ∈ Bn, then by Lemma 9 we have Bn = Bg(n). Thus, n = g(n), so we get

fix(ĝ) ⊆
⋃

n∈fix(g)

Bn.

But g is cofinitary and each Bn has size 2, so |fix(ĝ)| ≤ 2 |fix(g)| < ∞. □

Proposition 12. Γ̂ is maximal as an eventually different family of permutations.

Proof. Let ĥ ∈ S∞ and by Lemma 4 choose i : ω → 2, so that

h(n) := ⌊g(2n+ i(n))

2
⌋

is a bijection. By maximality of Γ as an eventually different family of permutations there is

g ∈ Γ and A ∈ [ω]ω such that h ↾A = g ↾A. Let ĥ be the corresponding word in Γ′, where every



COANALYTIC FAMILIES OF FUNCTIONS 9

occurrence of f±1 is replaced by χ0(f,H(f))±1. Thus, we have Ψ(ĝ) = g, so as before for every

n ∈ A there are i, j ∈ 2 such that

ĥ(2n+ in) = 2h(n) + i = 2g(n) + i = τ j ĝ(2n+ in).

But this implies either ĝ =∞ ĥ or ĝ =∞ τ ĥ as desired. □

Remark 13. The generated group is not free but by the considerations above its isomorphism

type is given by the product Z/2× F , where (1, idω) corresponds to the element τ .

Question 14. What about non-freely generated groups or whole groups?

5. Ideal independent families

A family I ⊆ [ω]ω is ideal independent if for all F ∈ [I]<ω and a ∈ I \ F , it is not the case

that a ⊆∗ ⋃F . An ideal independent family I is maximal ideal independent if I is maximal with

respect to inclusion. Equivalently, for every b ∈ [ω]ω there exists a finite F ⊆ I such that one of

the following occurs:

• b ⊆∗ ⋃F , or

• there is a ∈ I \ F such that a ⊆∗ b ∪
⋃
F .

The cardinal smm is defined as the minimum size of a maximal ideal independent family. Inves-

tigations of the relations between smm and other cardinal invariants can be found in [4] and [1].

Clearly maximal ideal independent families can be obtained using the Axiom of Choice, however

as of now the minimal projective complexity of such a family is unknown. The theorem below

gives an upper bound of Π1
1.

Theorem 15. If there exists a Σ1
2 maximal ideal-independent family, then there exists a Π1

1

maximal ideal-independent family of the same size.

Proof. Let I be a Σ1
2 maximal ideal independent family, and let H ⊆ [ω]ω × [ω]ω be a coanalytic

set such that x ∈ I if and only if there exists c ∈ [ω]ω with (x, c) ∈ H; by uniformization, we can

assume H is the graph of a function. Define a function χ : [ω]ω × [ω]ω → [ω]ω and z ∈ [ω]ω by

χ(x, c) := 3x ∪ 3c+ 1 = {3n | n ∈ x} ∪ {3n+ 1 | n ∈ c},
z := 3ω + 1 ∪ 3ω + 2 = {3n+ 1 | n ∈ ω} ∪ {3n+ 2 | n ∈ ω}.

Let

J := χ[H] ∪ {z}.
We will show J is maximal ideal independent. To see it is ideal independent, let F ∈ [J ]<ω

be arbitrary and let x ∈ J \ F . First, suppose x ̸= z and z ̸∈ F . Let (a, c) ∈ ([ω]ω)2 be such

that χ(a, c) = x. Then x \
⋃
F must be infinite, as it contains the set a \

⋃
proj0[χ

−1[F ]], where

proj0 : [ω]ω × [ω]ω → [ω]ω is the projection onto the first coordinate. Now suppose x = z. Then

z \
⋃

F is infinite, as it contains the set {3n+ 2 | n ∈ ω} ⊆ z. Lastly, suppose x ̸= z and z ∈ F ;

by the first case, it suffices to consider the case F = {z}. But clearly, the set {3n | n ∈ a} ⊆ x is

an infinite subset disjoint from z.
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Towards maximality, let b ∈ [ω]ω, and consider b0 := {n ∈ ω | 3n ∈ b}. By maximality of I,
there exists F ∈ [I]<ω such that one of the following occurs:

(1) b0 ⊆∗ ⋃F , or

(2) there exists x ∈ I \ F such that x ⊆∗ b0 ∪
⋃

F .

Suppose we are in the first case. Then b ⊆∗ {z} ∪
⋃
χ[(F × [ω]ω) ∩ H], since on the one hand

b ∩ 3ω is almost covered by χ[(F × [ω]ω) ∩H], and on the other hand,

b \ 3ω = {3n+ 1 ∈ b} ∪ {3n+ 2 ∈ b} ⊆ z.

Otherwise, fix x ∈ I as in case (2), and let c be such that (x, c) ∈ H. Then χ(x, c) is an element

of J such that χ(x, c) ⊆∗ b ∪
⋃
(χ[(F × [ω]ω) ∩H] ∪ {z}), since {3n+ 1 | n ∈ c} ⊆ z.

We claim that J is coanalytic. First, note that the set {z} is clearly ∆1
1-definable. Next, we

have that the set χ[H] is Π1
1, as it is defined by

x ∈ χ[H] ⇔ ∃a, c ∈ ∆1
1(x)[(a, c) ∈ H ∧ χ(a, c) = x].

Indeed, given x ∈ [ω]ω, a is reconstructible by x as the set {n ∈ ω | 3n ∈ x}. Similarly, also c is

reconstructible from x. Then, being the union of two coanalytic sets, J is coanalytic. □

An ultrafilter U is called a p-point if for any countable F ⊆ U , there exists Y ∈ U such that

Y ⊆∗ X for every X ∈ F . Recently, Bardyla, Cancino-Manriquez, Fischer, and Switzer have

defined the notion of U-encompassing ideal independent family, where U is an ultrafilter on ω

(see [1, Definition 5.1]). When such U is a p-point and under some additional assumptions,

this strengthening of the maximality condition for ideal independent families isolates a subclass

of maximal ideal independent families which are indestructible by any proper, ωω-bounding, p-

point preserving forcing notion. Moreover they show that under CH, for any p-point U there

exists a U -encompassing ideal independent family with the required additional assumptions for

indestructibility [1, Theorem 5.2]. Thus, adapting their construction in L and using the Σ1
2-

definable wellorder of the reals yields a Σ1
2-definable maximal ideal independent family which

remains maximal under a broad class of proper forcing notions. One particular instance of a

proper, ωω-bounding forcing notion which preserves p-points is the construction of a ∆1
3 wellorder

of the reals in a model of c = ℵ2 given by Fischer and Friedman in 2010 [6]; see also [2]. Using

these observations and Theorem 15 we obtain the following:

Corollary 16. Consistently, we have have ℵ1 = smm < c = ℵ2 together with a coanalytic witness

for smm and a ∆1
3 total wellorder of the reals.
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