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COANALYTIC FAMILIES OF FUNCTIONS

JULIA MILLHOUSE AND LUKAS SCHEMBECKER

ABSTRACT. For Van Douwen families, maximal families of eventually different permutations
and maximal ideal independent families we show that the existence of a X3 family implies the
existence of a II} family of the same size. We also prove a similar, but slightly weaker result for
generating sets of cofinitary groups.

1. INTRODUCTION

Many combinatorial sets of reals constituting cardinal characteristics can be obtained by an
application of the Axiom of Choice or equivalently, a wellordering of the continuum, and hence
33 examples of such sets exist in L, given the X1-definable wellorder of the constructible reals.
This was initially observed by Goédel [12]. With more careful methods, the recursive construction
can be done in such a way as to yield a coanalytic (II}) witness to the combinatorial family in
question; this is of particular interest when the family is known to not be analytic as in this case
this completely decides the minimal complexity of such an object. A robust coding technique
originating in the work of Erdos, Kunen, and Mauldin [5], later streamlined by Miller [I7], has
been the main tool for obtaining coanalytic witnesses of various combinatorial families in models
of V=L, see also [22]. Applied in the literature at the intersection of descriptive set theory and
set theory of the reals, we find theorems asserting the consistency of an inequality of cardinal
characteristics with the added nuance that the witness for the cardinal of value X; can be taken
to be coanalytic.

More recently, Tornquist [21] has constructed a coanalytic mad family under weaker assump-
tions than V=L; namely, he shows that assuming there exists a ¥ mad family, then there exists
a coanalytic mad family. His proof is purely combinatorial and simpler in application to the
method mentioned above, and moreover has the advantage of being able to be applied in models
of ~CH. More proofs resembling T6érnquist’s began appearing sporadically throughout the liter-
ature, for the cases of, for example, maximal independent families, maximal eventually different
families, maximal orthogonal families of Borel probability measures, and more recently Hausdorff
gaps (see [3], [8], [10], [18], respectively). A general framework and uniform presentation of these
proofs can be found in [I§].

In this paper we consider four cases of combinatorial sets of reals: Van Douwen families,
maximal eventually different families of permutation, maximal cofinitary groups, and maximal
ideal independent families. In each case we show that the existence of a X} such family implies
the existence of a II1 family of the same size.
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2. VAN DOUWEN FAMILIES

A family F C “w is called eventually different if |f N g| < w for all distinct f,g € F, i.e., there
are only finitely many n such that f(n) = g(n). Such a family F' is mazimal if it is maximal with
respect to inclusion among all eventually different families; equivalently, for any f € w“ there
exists g € F such that |f Ng| = w. A strengthening of this notion of maximality is that of being
Van Douwen; an eventually different family F' is Van Douwen if for any infinite partial function
f € “w, there exists g € F with |f N g| = w. In other words, Van Douwen families are maximal
eventually different families which are also maximal with respect to infinite partial functions.

Both CH and MA imply the existence of Van Douwen families. Zhang [23, Theorem 4.2] shows
that under CH, there exists a Cohen-indestructible Van Douwen family. Later, Raghavan [19]
proved that there always is a Van Douwen family, answering a question by Van Douwen (thus its
naming). Regarding definability, he also showed that Van Douwen families can never be analytic.
This is in stark contrast to the situation for maximal eventually different families. There, Shelah
and Horowitz [13] showed that there always exists a Borel maximal eventually different family of
size ¢. However as Borel and analytic sets satisfy the perfect set property and maximal eventually
different families cannot be countable, any Borel or analytic maximal eventually different family
must always be of size ¢, and therefore it is of interest to ask about the definability of maximal
eventually different families of size strictly less than ¢ in models of —CH.

In [§] Fischer and Schrittesser constructed a maximal eventually different family indestructible
by countably supported iteration or product of Sacks-forcing of any length, and they improve
this result by showing a coanalytic such family exists in L. Specifically, a Sacks indestructible
maximal eventually different family can be constructed in L in a ¥} way, and then [8, Theorem 8]
showed that the existence of a X3 is equivalent to the existence of a coanalytic maximal eventually
different family. Their argument follows the structure of Térnquists proof [21] that a ¥1 mad
family implies the existence of a IIi mad family. More specifically, they directly code a real
into the function values of the functions composing the coanalytic maximal eventually different
family. We will prove the analogous result for Van Douwen families; however, we need a different
coding argument as their coding argument destroys the property of being Van Douwen.

Theorem 1. If there is a X3 Van Douwen family, then there is a I} Van Douwen family of the
same size.

Proof. Define functions xq, x1 : “w X “2 — “w

xo(f;e)(n) :=2f(n) + c(n),
x1(f,0)(n) :=2f(n) +1 —c(n).
Now, assume that F is a X} Van Douwen family. Further let H C “w x “2 be Il such that F

is the projection of H to the first component. By uniformization we may assume that H is the
graph of a partial function. Let

G = xo[H] U x1[H].
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We claim that G is the desired Van Douwen family. So let fo € F and ¢y := H(fy). By
construction we have for all n € w

xo(fo, co)(n) # x1(fo, co)(n).

Similarly, for f; € F with f1 # fo and ¢; := H(f1) we may choose N € w such that fo(n) # fi(n)
for all n > N. But then for all such n > N and ig,71 € 2 we also have

Xio (fo; c0) () # Xi, (f1,¢1)(n).

Thus, all members of G are eventually different. Now, let g : A — w be an infinite partial
function. Then, we define g : A — w by

§(n) = L59(n)].

Since F' is Van Douwen, choose f € F and B € [A]¥ such that f|B = g | B. Let ¢ := H(f),
then for all n € B there are i, € 2 with

g(n) =2g(n) +i=2f(n)+i=x;(f, c)(n).
Thus, either g = xo(f,¢) or g = x1(f,c) as desired. As for the definability of G, we will show
that for all g € “w,

gEG@H(f,C) € A%(g)[(.ﬂc) € H/\(XO(fvc) :g\/X1(faC) :g)]u

which is a II} definition by the Spector-Gandy theorem (see, for example, [17, Corollary 29.3]).
Indeed, given any g, we have that f = [, where

{5’(2") if g(n) even,

g _
[51(n) = 91 i g(n) odd.

2
Clearly g — | §] is a recursive function. Then we can define the reals ¢(n) = i if and only if g(n)
mod 2 = 4, and ¢/(n) = 1 — ¢(n). To check whether (f,c) € H or (f,¢’) € H are both IIj, and
checking x;(f,c) = g is Borel for each i < 2. This shows the IIj-definability of G above. g

Corollary 2. It is consistent with ¢ > Ny that there exists a coanalytic Van Douwen family of
stze Nq.

Proof. Repeat Zhang’s construction of a Cohen-indestructible Van Douwen family F in L , along
an enumeration of the set of nice Cohen names for reals given by the X}-definable wellorder <.
After adding k-many Cohen reals, where k > Ng is a regular cardinal, F' is still a Van Douwen
family, which has a 31 definition by Shoenfield absoluteness. Apply the theorem above. 0

3. EVENTUALLY DIFFERENT FAMILIES OF PERMUTATIONS

In this section we will consider eventually different families of permutations; these are eventu-
ally different families F' C S, where S denotes the set of permutations (i.e. bijections) of w.
Such a family F' is maximal as an eventually different family of permutations if for any g € S
there exists f € F such that f(n) = g(n) for infinitely many n € w. The minimal size of a
maximal eventually different family of permutations is denoted a,. Constructions of models in
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which a. = a, = Ny < ¢ = Ny with coanalytic witnesses can be found in [J]; it remains open
whether a, = a, is a theorem of ZFC.

Witnesses for a, can be analytic, by results of Horowitz and Shelah, though one can ask about
the definability of Ni-sized maximal eventually different families of permutations in models with
¢ > Ny. In this section will show that a coanalytic witness for a, = N; already exists if there is a
»i witness for a, = Ny. This is the optimal complexity of such a family in models with ¢ > N».
The proof will make use of the following easy to prove graph theoretic fact:

Fact 3. FEwvery bipartite 2-reqular graph decomposes into a disjoint union of cycles of even or
infinite length and hence has a perfect matching by picking edges alternatingly.

Lemma 4. Assume f:w — w is 2-to-1, i.e. every n € w has exactly two preimages. Then there
is a function i : w — 2 such that the function g : w — w defined by g(n) := f(2n +i(n)) is a
bijection.

Proof. Consider the following bipartite graph H (with possible multi-edges):

(i) We have countably many left {L,, | n € w} and right {R,, | n € w} nodes,
(ii) For each n € w we have an edge e,, between Lizy and Ryp).

By construction, every L, has degree 2. As f is 2-to-1 the same holds for the R, i.e. H is
2-regular. Hence, H has a perfect matching P by the fact above. Now, we define for n € w

. 0 if es, € P,
i(n) == }

1 if €an+1 € P.
Note, for every n € w that ey, and eg,+1 are the only edges incident to L,. Thus, exactly one
of these cases above occurs as we have a perfect matching. It is also easy to see that g will then
be bijective: If g was not injective, then P would not be a matching, and if g was not surjective,
then P would not be perfect. O

Theorem 5. If there is a ¥} mazimal eventually different family of permutations, then there is
a I} mazimal eventually different family of permutations of the same size.

Proof. Define functions xg, X1 : Sec X “2 = S for n € w by

xo(f;¢)(2n) = 2f(n) + c(n),
xo(f,¢)2n +1) :=2f(n) +1 - c(n),

x1(f,¢)(2n) :=2f(n) +1 —¢(n),
x1(f,¢)2n +1) := 2f(n) + c(n).

Now, assume that F is a ¥3 maximal family of permutations. Further let H C “w x “2 be II}
such that F' is the projection of H to the first component. By uniformization we may assume
that H is the graph of a partial function. Let

N

F = xo[H] U x1[H].
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We claim that F is the desired maximal eventually different family of permutations. Let f € S,
c €“2and i € 2. First we show that x;(f,c) € Seo. Assume for ng,n; € w and jo, j1 € 2 we have

xi(f,¢)(2no + jo) = xi(f, c)(2n1 + j1)

By construction, this implies that f(ng) = f(n1). But f is injective, so also ng = ni. Again, by
construction of x;(f, c) we also obtain jy = ji1, i.e. x;(f, ¢) is injective. For surjectivity, let m € w
and j € 2. Since f is surjective, choose n such that f(n) = m. But then either

Xi(f,e)(2n) =2f(n) +j=2m+j
or we have
Xi(f,e)2n+1)=2f(n)+j=2m+j.

Hence x;(f,c) is surjective. Next, let fo € F and ¢g := H(fp). By construction we have for all
new

Xo(fo,co)(n) # x1(fo, co)(n).

Similarly, for f; € F with fi # fo and ¢; := H(f1) we may choose N € w such that fo(n) # fi(n)
for all n > N. But then for all such n > N and ig,i; € 2 we also have

Xio (fo; c0) () # Xiy (f1,¢1)(n).

Thus, all members of F are eventually different. Now, towards maximality of F let § € Swo.
Choose a function i : w — 2 such that ¢ : w — w defined by

9(2n +i(n))
gln) = |2 TR
is a bijection. This is possible by the previous lemma as the function L@J is 2-to-1. By
maximality of F', we may choose f € F and A € [w]“ such that g[| A= f [ A. Let ¢ := H(f) and
n € A. Then there are j, k € 2 so that

9(2n +i(n)) = 29(n) +j = 2f(n) +j = xx(f, c)(2n +i(n)).

Thus, either § = xo(f,c) or § = x1(f,c) as desired. As before Spector-Gandy shows that F
is [T} as for fixed i € 2 we can compute (f,c) from x;(f,c). O

Before we move on to maximal cofinitary groups, we discuss the minimal complexity of a
maximal family of permutations. For a. Schrittesser [20] showed that there is a II{, i.e. a closed
maximal eventually different family. Similarly, for a, Mejak and Schritesser showed that there
is a 19 set freely generating a maximal cofinitary group. Thus, the whole group has complexity
¥9. Moreover, this group is not only maximal as a cofinitary group, but also maximal as an
eventually different family of permutations (see [16, Proposition 2.13])). Hence, they also proved
that there is a ¥ witness for a,, however to the knowledge of the authors it is not known what
the minimal complexity for a maximal eventually different family of permutations is.

Question 6. Is there a ITI! maximal eventually different family of permutations?
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In the same way Schrittesser obtained a II{ maximal eventually different family, one might
assume that our proof above may be used to obtain an analogous statement to [20, Lemma 4.1].
However, with our coding above we only get the following;:

Lemma 7. Let 0 < £ < wy. If there is a Hg 1o mazimal eventually different family of permuta-
tions, then there is a Hgﬂ mazximal eventually different family of permutations.

Proof. Adapt [20, Lemma 4.1] using the coding above. O

Note the extra assumption of 0 < &, so with this lemma we can only obtain a I19 witness for
a,. Essentially, this is due to the coding presented above coding elements of Cantor space instead
of Baire space. Hence, in order to define the maximal eventually different family of permutations
of lower complexity one needs to express that the sequence of (non-)flips encodes a sequence of
natural numbers. However, to this end we need to require that the sequence of (non-)flips is not
eventually constant. But this is a IIJ statement, thus requiring the extra assumption.

4. COFINITARY GROUPS

Next, we will consider maximal cofinitary groups. If an eventually different family of per-
mutations G is also a group with respect to concatenation, then we call it a cofinitary group.
Equivalently, every element of GG is either the identity or only has finitely many fix-points. G
is maximal if its maximal with respect to inclusion among all cofinitary groups. The minimal
cardinality of a maximal cofinitary group is uncountable and denoted with a,; again no known
relations or the absence thereof between a.,a, and a, are known.

In terms of definability it is often easier to obtain a definable generating set for a cofinitary
group. We say that F' generates G if (F') = G, where (F') is the group generated by F'. If there
are no relations among the generators in F', we say that F' freely generates G. For example, it was
first shown by Gao and Zhang [I1] that in L there is a [T} generating set for a maximal cofinitary
group, before Kastermans [I5] showed that indeed the entire group can be II}. Later, Horowitz
and Shelah [I4] showed that there always is a Borel maximal cofinitary group. More recently,
Fischer, Schrittesser and the second author [7] showed that in L there is a I} cofinitary group
which is indestructible by various different tree forcings preserving non(M). They employed
an intricate coding argument, where information is coded into the lengths orbits and into the
amount of orbits of a certain length.

Here, we use a simpler coding technique to obtain a result for cofinitary groups similar to the
previous sections. However, with our methods we can only get a result for generating sets of
cofinitary groups and we need to additionally assume that the maximal cofinitary group is freely
generated and also maximal as an eventually different family of permutations. This seems like
a strong extra assumption, but indeed most cofinitary groups constructed in the natural way,
satisfy these extra assumptions. In particular, the next theorem provides a different way to show
that many L-extensions have a coanalytic generating set for a maximal cofinitary group.
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Theorem 8. If there is a X3 family freely generating a mazimal cofinitary group, which is also
mazimal as an eventually different family of permutations, then there is a 11} family generating a
mazximal cofinitary group, which is also mazximal as an eventually different family of permutations.

Proof. As in Theorem [5] define xo, X1 : Seo X “2 — Soo for n € w by

xo(f,c)(2n) :=2f(n) + c(n),
xo(f,e)@2n+1):=2f(n) +1—c(n),

xi(f,e)(2n) :==2f(n) +1—c(n),
x1(f,c)(2n+1) :=2f(n) + ¢(n).

This time, assume that F is a 33 set freely generating the maximal cofinitary group I' := (F).
Further let H C “w x “2 be II} such that F is the projection of H to the first component. By
uniformization we may assume that H is the graph of a partial function. Let
F'i= xo[H] U xa[H].

By the arguments in the previous section F is a family of permutations and is I1}. Tt remains to
show that for I := (F') we have

(1) T is cofinitary,

(2) T' is maximal as an eventually different family of permutations.

From now on we consider the partition of w given by the pairs By, := {2n,2n + 1} for n € w. We
need the following lemmata:

Lemma 9. For every g € ' there is a unique g € T such that for alln € w
9[Bn] = By(n)-
Moreover, the assignment U : I 57T given by g — g is a surjective group homomorphism with

U(xi(f,H(f))=f forall f € F andi € 2.

Proof. For uniqueness, suppose g, h € I satisfy §[Bn] = By(,) = Bp(n)- Since the B,’s are disjoint
this implies g = h, so it suffices to prove existence. To this end, for ¢ € 2, f € F and ¢ := H(f)
by definition of y; we clearly have that

Xi(f,¢)[Bn] = By(n)-

Similarly, it is easy to see that also for the inverse x;(f,c)~! we have
Xi(f,¢) ' [Bal = B-1y).

Thus, the required g € I exists for all generators and inverses thereof in I'. We prove the general
case by induction on the length of =, so let § = ;... 2, be a reduced word with letters in P
If £ = 0 then g = id, and id,[B,| = B, = Big,, (n) with id,, € I'. Now, let k > 0, hy = &7 and
he = &9... 3. By induction, there are hy, ho € ' such that iLl[Bn] = By, (n) and ho [Bn] = Bhy(n)
for all n € w. Then, for n € w we compute

§[Bn] = ha[ha[By]] = Bl[Bhg(n)] = Bh, (ha(n)) = B(hioha)(n)s
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proving the existence of the desired g := hjohg. This computation also proves the homomorphism
property of . Furthermore, we obtain

so W is surjective. O
Lemma 10. Let 7: w — w be the flip map defined for n € w by
T(2n):=2n+1 and 7T(2n+1):=2n.
Then 7 € T is central in T and we have ker(¥) = {id,,, 7}.
Proof. First, note that 72 = id,, and for every f € F, i € 2 and ¢ := H(f) we have

XO(f?C)Xl(,ﬂC)_l =T and Xl(f7 C)_IXO(fv C) =T

This shows that 7 € I' and that 7 commutes with all generators of ['. Thus, 7 is central in I,
Further, ¥(7) = id,,, so ker(¥) D {idy,7}. Now, let g € ker(¥). Write g as a word in letters
from [+, Using X%ﬂ = Txf)tl = X(:)tl’i', centrality of 7 and 72 = id,,, replace each occurrence of
X1 by xo and move the 7 to the front to obtain
g="1'h,
where i € 2 and h is a word in the alphabet {xo(f, H(f))' | f € F}. Remember §,7 € ker(¥),
so apply ¥ to obtain
idy, = U(§) = U(r'h) = U(r)U(h) = U(h).

But by Lemma@ ¥ is a homomorphism which maps xo(f, H(f)) to f, so U(h) is the corresponding
word in the generators F*! of I'. But I' = (F) is freely generated, so the equation above implies
that h = id,, Consequently, § = 7¢ € {id,,, 7}. g

Proposition 11. I is cofinitary.
Proof. Let g € T \ {id,,}. If § € ker(¥), then by the previous lemma we can only have ¢ = 7

which has no fixpoints. Thus, we may assume that g :== ¥(x) € I'\ {id, }. Let k € w be a fixpoint
of h, say k € By, then by Lemma |§| we have B, = By(,). Thus, n = g(n), so we get

fix(9) € | J Bn.
néefix(g)

But g is cofinitary and each B,, has size 2, so [fix(g)| < 2 [fix(g)| < oo. O
Proposition 12. I' is mazimal as an eventually different family of permutations.

Proof. Let h € Sy and by Lemma [4| choose 7 : w — 2, so that

h(n) = L9(271 er Z'(n))J

is a bijection. By maximality of I' as an eventually different family of permutations there is
g €T and A € [w]“ such that h | A = g A. Let h be the corresponding word in I, where every
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occurrence of f*1 is replaced by xo(f, H(f))™. Thus, we have ¥(§) = g, so as before for every
n € A there are i,j € 2 such that

h(2n +in) = 2h(n) +i = 2g(n) +i = 77 §(2n + in).
But this implies either g = h or g == Th as desired. O

Remark 13. The generated group is not free but by the considerations above its isomorphism
type is given by the product Z/2 x F, where (1,id,,) corresponds to the element 7.

Question 14. What about non-freely generated groups or whole groups?

5. IDEAL INDEPENDENT FAMILIES

A family 7 C [w]¥ is ideal independent if for all F € [Z]<* and a € 7\ F, it is not the case
that a C* |J F. An ideal independent family Z is mazimal ideal independent if Z is maximal with
respect to inclusion. Equivalently, for every b € [w]“ there exists a finite F' C Z such that one of
the following occurs:

e b C*|JF,or

e there is a € Z\ F such that a C* bU | F.
The cardinal §,,,, is defined as the minimum size of a maximal ideal independent family. Inves-
tigations of the relations between s,,,, and other cardinal invariants can be found in [4] and [I].
Clearly maximal ideal independent families can be obtained using the Axiom of Choice, however
as of now the minimal projective complexity of such a family is unknown. The theorem below
gives an upper bound of H%.

Theorem 15. If there exists a Y3 mazximal ideal-independent family, then there exists a I1}
mazimal ideal-independent family of the same size.

Proof. Let T be a 33 maximal ideal independent family, and let H C [w]¥ x [w]* be a coanalytic
set such that = € Z if and only if there exists ¢ € [w]* with (z,c) € H; by uniformization, we can
assume H is the graph of a function. Define a function x : [w]¥ X [w]¥ — [w]¥ and z € [w]* by

X(x,¢) :=3xU3c+1 ={3n|nez}U{3n+1|nec},
z = 3w+1U3w+2 ={3n+1l|newlU{3n+2|necw}

Let
J = x[H]U{z}.

We will show J is maximal ideal independent. To see it is ideal independent, let F' € [J]|<%
be arbitrary and let z € J \ F. First, suppose  # z and z ¢ F. Let (a,c) € ([w]*)? be such
that x(a,c) = x. Then x \ |J F must be infinite, as it contains the set a \ |Jprojo[x *[F]], where
projy : [w]¥ x [w]¥ — [w]“ is the projection onto the first coordinate. Now suppose x = z. Then
z \ U F' is infinite, as it contains the set {3n + 2 | n € w} C z. Lastly, suppose = # z and z € F
by the first case, it suffices to consider the case F' = {z}. But clearly, the set {3n|n € a} Czis
an infinite subset disjoint from z.
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Towards maximality, let b € [w]*, and consider by := {n € w | 3n € b}. By maximality of Z,
there exists F' € [Z]<“ such that one of the following occurs:
(1) bp C*UF, or
(2) there exists z € Z\ F such that © C* by U F.

Suppose we are in the first case. Then b C* {z} U x[(F x [w]¥) N H], since on the one hand
b N 3w is almost covered by x[(F x [w]¥) N H], and on the other hand,

b\3w={3n+1cblu{3n+2cb}C=

Otherwise, fix x € Z as in case (2), and let ¢ be such that (z,c) € H. Then x(z,c) is an element
of J such that x(x,c) C* bUJ(X[(F x [w]*) N H]U{z}), since {3n+1|n € c} C z.

We claim that J is coanalytic. First, note that the set {2z} is clearly Al-definable. Next, we
have that the set y[H] is I, as it is defined by

x € x[H] < Ja,c € Al(x)[(a,c) € HAx(a,c) = z].

Indeed, given = € [w]¥, a is reconstructible by z as the set {n € w | 3n € x}. Similarly, also c¢ is
reconstructible from x. Then, being the union of two coanalytic sets, J is coanalytic. O

An ultrafilter U is called a p-point if for any countable F C U, there exists Y € U/ such that
Y C* X for every X € F. Recently, Bardyla, Cancino-Manriquez, Fischer, and Switzer have
defined the notion of U-encompassing ideal independent family, where U is an ultrafilter on w
(see [I, Definition 5.1]). When such U is a p-point and under some additional assumptions,
this strengthening of the maximality condition for ideal independent families isolates a subclass
of maximal ideal independent families which are indestructible by any proper, w*-bounding, p-
point preserving forcing notion. Moreover they show that under CH, for any p-point U there
exists a U-encompassing ideal independent family with the required additional assumptions for
indestructibility [I, Theorem 5.2]. Thus, adapting their construction in L and using the 3i-
definable wellorder of the reals yields a Y3-definable maximal ideal independent family which
remains maximal under a broad class of proper forcing notions. One particular instance of a
proper, w*-bounding forcing notion which preserves p-points is the construction of a Ail,) wellorder
of the reals in a model of ¢ = Rg given by Fischer and Friedman in 2010 [6]; see also [2]. Using
these observations and Theorem [15| we obtain the following:

Corollary 16. Consistently, we have have Ry = §pm < ¢ = Rg together with a coanalytic witness
for s;mm and a A% total wellorder of the reals.
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